Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiao-Bo Huang,* Miao-Chang Liu, Li-Xue Zhang, An-Jiang

 Zhang, Ya-Li Xu and Miao-Lin HuSchool of Chemistry and Materials Science, Wenzhou Normal College, Zhejiang Wenzhou, 325027, People's Republic of China

Correspondence e-mail:
xiaobhuang@hotmail.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.045$
$w R$ factor $=0.116$
Data-to-parameter ratio $=13.3$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

3-(2-Ethoxyphenyl)-6-phenyl-1,2,4-triazolo-[3,4-b][1,3,4]thiadiazole

In the title compound, $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{OS}$, the central heterocyclic system formed by the five-membered triazole and thiadiazole rings is planar. The bond lengths within the system indicate some degree of delocalization.

Comment

1,2,4-Triazolo[3,4-b][1,3,4]thiadiazoles are condensed heterocyclic compounds combining the properties of triazoles (Feng et al., 2000) and thiadiazoles (Zhao et al., 2001). As a result, these compound show a wide range of biological activities, such as antimicrobial, antiinflammatory, fungicidal, antiviral, herbicidal and plant-growth regulating activity (Zhang et al., 1994).

(I)

The molecule of the title compound, (I), contains a triazole (ring A), a thiadiazole (ring B), an ethoxybenzene (ring C) and a phenyl ring ($\operatorname{ring} D$). All rings are essentially planar, with average deviations from planarity of 0.0017 (2), 0.0055 (2), 0.0054 (3) and 0.0046 (3) \AA for rings A, B, C and D, respectively. The central heterocyclic system is planar, as indicated by the dihedral angle between rings A and $B\left[1.05(6)^{\circ}\right]$ and by the sum of the bond angles around the atoms at the junction of the five-membered rings (360.0 for both N 2 and C8). Ring D is almost coplanar with the thiadiazole ring [dihedral angle $=$ $3.31(7)^{\circ}$], while ring C is rotated by $49.67(7)^{\circ}$ with respect to the triazole ring.

Bond lengths and angles within the heterocyclic system (Table 1) agree well with the values reported in the literature (Fornies-Marquina et al., 1974; Molina et al., 1989; Zhang et al., 1996; Chen et al., 2000; Dong et al., 2002). The bond lengths indicate some degree of delocalization around the ring system, with the three $\mathrm{C}=\mathrm{N}$ bonds averaging 1.302 (3) \AA and the $\mathrm{N}-$ N bonds ranging from 1.375 (2) to 1.404 (3) Å.

Experimental

The title compound was prepared in 80% yield from 4 -amino-(2-ethoxyphenyl)-5-mercapto-1,2,4-triazole (5.0 mmol) and benzoic acid

Received 3 June 2005 Accepted 15 June 2005 Online 24 June 2005
(5.5 mmol) in phosphorus oxychloride (20 ml). The mixture was refluxed for 7 h . The reaction mixture was poured into crushed ice gradually with stirring. Solid potassium hydroxide was added till the pH value was 8 . After standing overnight the separated solid was filtered off, washed with cold water, dried, and recrystallized from absolute ethanol to afford the title compound. Single crystals suitable for X-ray data collection were obtained by slow evaporation of an ethanol solution (m.p. 443-445 K). IR (KBr): 3076, 1604, 1528, 1468, $1252,681 \mathrm{~cm}^{-1 .}{ }^{1} \mathrm{H}$ NMR (chloroform-d, p.p.m.): 7.89-7.06 ($m, 9 \mathrm{H}$), $4.17(q, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 1.30(t, 3 \mathrm{H}, J=7.0 \mathrm{~Hz})$.

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{OS}$

$M_{r}=322.38$
Monoclinic, $P 2_{1} / n$
$a=10.3988$ (9) A
$b=8.7056$ (8) \AA
$c=17.5354$ (16) \AA
$\beta=102.184(2)^{\circ}{ }_{\circ}$
$V=1551.7(2) \AA^{3}$
$Z=4$

$$
\begin{aligned}
& D_{x}=1.380 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 2865 \\
& \quad \text { reflections } \\
& \theta=2.4-24.5^{\circ} \\
& \mu=0.22 \mathrm{~mm}^{-1} \\
& T=298(2) \mathrm{K} \\
& \text { Block, colorless } \\
& 0.38 \times 0.26 \times 0.17 \mathrm{~mm} \\
& \\
& 2792 \text { independent reflections } \\
& 2405 \text { reflections with } I>2 \sigma(I) \\
& R_{\text {int }}=0.026 \\
& \theta_{\max }=25.2^{\circ} \\
& h=-12 \rightarrow 7 \\
& k=-10 \rightarrow 10 \\
& l=-19 \rightarrow 21
\end{aligned}
$$

Data collection

Bruker APEX area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\text {min }}=0.922, T_{\text {max }}=0.964$
8034 measured reflections

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0531 P)^{2}\right. \\
& +0.6118 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \text { 。 } \\
& \Delta \rho_{\max }=0.24 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\text {min }}=-0.23 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.063 \text { (3) }
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right)$.

S1-C8	$1.725(2)$	$\mathrm{N} 2-\mathrm{C} 8$	$1.359(2)$
S1-C7	$1.770(2)$	$\mathrm{N} 2-\mathrm{C} 9$	$1.371(2)$
O1-C11	$1.362(2)$	$\mathrm{N} 3-\mathrm{C} 8$	$1.302(3)$
O1-C16	$1.432(3)$	$\mathrm{N} 3-\mathrm{N} 4$	$1.404(3)$
N1-C7	$1.295(2)$	$\mathrm{N} 4-\mathrm{C} 9$	$1.310(3)$
N1-N2	$1.375(2)$		
C7-N1-N2	$108.20(16)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{S} 1$	$116.13(15)$
C8-N2-C9	$105.68(16)$	$\mathrm{N} 3-\mathrm{C} 8-\mathrm{N} 2$	$111.76(19)$
C8-N2-N1	$118.56(16)$	$\mathrm{N} 3-\mathrm{C} 8-\mathrm{S} 1$	$139.18(17)$
C9-N2-N1	$135.76(16)$	$\mathrm{N} 2-\mathrm{C} 8-\mathrm{S} 1$	$109.05(15)$
C8-N3-N4	$105.05(17)$	$\mathrm{N} 4-\mathrm{C} 9-\mathrm{N} 2$	$108.21(18)$
C9-N4-N3	$109.30(17)$	$\mathrm{N} 4-\mathrm{C} 9-\mathrm{C} 10$	$126.27(18)$
N1-C7-C4	$123.43(18)$	$\mathrm{N} 2-\mathrm{C} 9-\mathrm{C} 10$	$125.52(17)$

Figure 1
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}=1.2 U_{\text {eq }}(\mathrm{C})$ for aromatic H atoms, and C-H $=0.96-0.97 \AA$ and $U_{\text {iso }}=1.5 U_{\text {eq }}(\mathrm{C})$ for methylene and methyl H atoms.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Bruker, 2002); software used to prepare material for publication: SHELXL97.

The authors acknowledge financial support by the Zhejiang Provincial Natural Science Foudation of China (No. M 203149).

References

Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02), SMART (Version 5.62) and $X P$ (Bruker, 2002). Bruker AXS Inc., Madison, Winsonsin, USA.
Chen, H.-S., Li, Z.-M., Yang, X.-P., Wang, H.-G. \& Yao, X.-K. (2000). Chin. J. Struct. Chem. 19, 317-321.
Dong, H.-S., Quan, B., Zhu, D.-W. \& Li, W.-D. (2002). J. Mol. Struct. 613, 1-5.
Feng, Zh. X., Zhang, W. N., Zhou, Y. J., Lu, J. G., Zhu, J. \& Li, K. (2000). Chem. J. Chin. Univ. 21, 1221-1226.

Fornies-Marquina, J., Courseille, C. \& Elguero, J. (1974). Cryst. Struct. Соттии. 3, 7-9.
Molina, P., Arques, A., Alias, M. A., Llamos Saiz, A. L. \& Foces-Foces, M. C. (1989). Liebigs Ann. Chem. pp. 1055-1059.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zhao, W. G., Chen, H. S., Li, Zh. M., Han, Y. F., Yan, H., Lai, J. Y. \& Wang, S. H. (2001). Chem. J. Chin. Univ. 22, 939-942.

Zhang, Z. Y., Zhao, L. \& Li, M. (1994). Chin. J. Org. Chem. 14, 74-80.
Zhang, Z.-Y., Zou, N., Zhu, Y., Zhao, L. \& Li, M. (1996). Acta Cryst. C52, 2787-2789.

